Evaluation of the Heat Resistance of *Salmonella enterica* ser. Enteritidis PT30 on Honey/Syrup-Coated Almonds and Uncoated Almonds after Exposure to Hot Oil Treatment

Shirin J. Abd, Toni de Senna, Anne Nillo and Carrie M. H. Ferstl; Covance Food Solutions, Livermore, California

Introduction

The Almond Board of California (ABC) has conducted many years of research to study the efficacy of hot oil on the reduction of *Salmonella enterica* ser. Enteritidis PT30 on oil-roasted almonds. Based upon this research, a minimum process of 2.0 minutes of exposure to hot oil at 260°F or above is required to provide a 5-log reduction of *S. enterica* ser. Enteritidis PT30 on the surface of whole almonds. Since the studies to establish the oil-roasting pasteurization criteria for oil-roasted almonds were completed using uncoated whole-kernel almonds, ABC is interested in evaluating the heat resistance *S. enterica* ser. Enteritidis PT30 on oil-roasted almonds with various commercial coatings to verify the suitability of the oil-roasting process (260°F for 2.0 min) for coated almonds.

Objectives

- Determine an enumeration procedure using various mixing techniques to recover *S. enterica* ser. Enteritidis PT30 from coated almonds.
- Determine if various oil-roasting treatments are sufficient to achieve the required 5-log reduction of *S. enterica* ser. Enteritidis PT30 when applied to uncoated, honey-coated, xanthan-coated and starch-coated almonds.

Materials & Methods

Almond Products

- Uncoated almonds
- Honey-coated almonds
- Xanthan-coated almonds
- Starch-coated almonds

Target Organism

- *S. enterica* ser. Enteritidis PT30

Sample Process Techniques Evaluated

- Blending
- Smashing
- Shaking

Oil Roasting Treatment

- 260°F for 1.0, 1.5 and 2.0 minutes
- 3 replicate samples
- 3 trials

Enumeration

- Dilute with cold tryptic soy broth
- Plate in duplicate onto tryptic soy agar
- Incubate at 35°C for 2 days

Results

Objectives

- Determine an enumeration procedure using various mixing techniques to recover *S. enterica* ser. Enteritidis PT30 from coated almonds.
- Determine if various oil-roasting treatments are sufficient to achieve the required 5-log reduction of *S. enterica* ser. Enteritidis PT30 when applied to uncoated, honey-coated, xanthan-coated and starch-coated almonds.

Materials & Methods

Almond Products

- Uncoated almonds
- Honey-coated almonds
- Xanthan-coated almonds
- Starch-coated almonds

Target Organism

- *S. enterica* ser. Enteritidis PT30

Sample Process Techniques Evaluated

- Blending
- Smashing
- Shaking

Oil Roasting Treatment

- 260°F for 1.0, 1.5 and 2.0 minutes
- 3 replicate samples
- 3 trials

Enumeration

- Dilute with cold tryptic soy broth
- Plate in duplicate onto tryptic soy agar
- Incubate at 35°C for 2 days

Conclusions

- The recovery of *S. enterica* ser. Enteritidis PT30 from uncoated and xanthan-coated almonds was similar between blending, smashing and shaking sample process techniques both before and after oil roasting.
- The log reduction of *S. enterica* ser. Enteritidis PT30 on honey-coated, xanthan-coated and starch-coated almonds achieved by oil-roasting processes of less than 2.0 minutes at 260°F was inconsistent.
- A greater than 5-log reduction in *S. enterica* ser. Enteritidis PT30 was achieved on uncoated, honey-coated, xanthan-coated and starch-coated almonds after oil roasting for 2.0 min at 260°F.
- The commercial oil-roasting process, which achieves temperatures greater than 260°F for longer than 2.0 min, should be sufficient to reach a greater than 5-log reduction of *S. enterica* ser. Enteritidis PT30 on uncoated, honey-coated, xanthan-coated and starch-coated almonds.

Next Steps

- Conduct additional studies to investigate the reason for the inconsistent recovery of *S. enterica* ser. Enteritidis PT30 on coated almonds.
- Conduct additional studies to evaluate the impact of coating material drying time on the effectiveness of the oil-roasting process to reduce *S. enterica* ser. Enteritidis PT30 on coated almonds.

Reference

Acknowledgements

Financial support for this research was provided by The Almond Board of California (Modesto, CA). Additional support for this project provided by Guangwei Huang (Almond Board of California) and Tim Birmingham (Almond Board of California) is greatly appreciated. Technical support from Martha Kimber for this project is gratefully acknowledged.

Presented at IAFP 2016

Table 1. Average Water Activity and Moisture Content of Coated and Uncoated Almonds Prior to Oil Roasting (n=6)

<table>
<thead>
<tr>
<th>Almond Type</th>
<th>Water Activity Mean ± SD</th>
<th>% Moisture Mean ± SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uncoated Almonds</td>
<td>0.5578 ± 0.0135</td>
<td>4.91 ± 0.17</td>
</tr>
<tr>
<td>Honey-Coated Almonds</td>
<td>0.5633 ± 0.0147</td>
<td>5.69 ± 0.28</td>
</tr>
<tr>
<td>Xanthan-Coated Almonds</td>
<td>0.6484 ± 0.0151</td>
<td>5.97 ± 0.24</td>
</tr>
<tr>
<td>Starch-Coated Almonds</td>
<td>0.7443 ± 0.0389</td>
<td>7.72 ± 1.24</td>
</tr>
</tbody>
</table>

Figure 1. Average recovery of *S. enterica* ser. Enteritidis PT30 from uncoated almonds via blending, smashing, and shaking methods. Vertical bars indicate standard deviation (n=9).

Figure 2. Average recovery of *S. enterica* ser. Enteritidis PT30 from almonds oil roasted at 260°F for 1 min using blending, smashing, and shaking methods. Vertical bars indicate standard deviation (n=9).

Figure 3. Average survival of *S. enterica* ser. Enteritidis PT30 on coated and uncoated almonds after oil roasting at 260°F for various treatment times. Vertical bars indicate standard deviation (p < 0.05).