Please enable JavaScript to view this page correctly
Development_Activation of ERK by Alpha-1 adrenergic receptors
Subtype alpha-1 adrenergic receptors consists of Alpha-1A adrenergic
receptor , Alpha-1B adrenergic receptor and
Alpha-1D adrenergic receptor . They participate in many
physiological processes via different pathways. One of the best studied alpha-1
adrenergic receptors-stimulated pathways is a Mitogen-activated protein kinase 1 and 3
(ERK1/2 ) activation [1 ], [2 ].
Natural catecholamines, Adrenaline , and
Noradrenaline, activate alpha-1 adrenergic receptors [1 ], [3 ]. The activated receptors interact with different Guanine
nucleotide binding proteins (G-proteins). All three receptors interact with
G-protein alpha-q and G-protein alpha-11
[4 ]. Alpha-1A adrenergic receptor
and Alpha-1B adrenergic receptor couple with
G-protein alpha-14 [5 ]. Alpha-1B
adrenergic receptor and Alpha-1D adrenergic
receptor interact with Transglutaminase 2
(TGM2 ) [6 ], [7 ], [8 ].
Alpha-1B adrenergic receptor couples with
G-protein alpha-15 [5 ] and G-protein alpha
activating activity polypeptide O (G-protein alpha-o ) [4 ].
G-protein alpha-11 , G-protein
alpha-q , G-protein alpha-14 ,
G-protein alpha-15 activate Phospholipase C beta 1
(PLC-beta1 ) [1 ], [5 ], [9 ]. TGM2 activate Phospholipase C delta 1
(PLC-delta1 ) [8 ], [10 ].
PLC-beta1 and PLC-delta1
hydrolyze Phosphatidylinositol-4,5-bisphosphate
(PtdIns(4,5)P2 ) to produce Inositol 1,4,5-trisphosphate
(IP3 ) and 1,2-diacyl-glycerol
(DAG ) [8 ], [11 ].
DAG and IP3 participate in
activation of Ca('2+) -dependent Protein kinase C alpha
(PKC-alpha ) [12 ],
Ca('2+) -independent Protein kinases C delta and epsilon
(PKC-delta and PKC-epsilon )
[1 ], [13 ], [14 ] and mobilization of intracellular
Ca('2+) . All these pathways may lead to activation of cell
growth and proliferation.
Cytosolic Ca('2+) activates Calmodulin
/ Calcium/calmodulin-dependent protein kinase II
(CaMK II )/ PTK2B protein tyrosine kinase 2
beta (Pyk2(FAK2) )/ v-src
sarcoma viral oncogene homolog (c-Src )/ SHC transforming
protein (Shc )/ Son of
sevenless homolog (SOS )/ v-Ha-ras Harvey rat sarcoma viral
oncogene homolog
(H-Ras )
/ v-raf-1 murine leukemia viral oncogene
homolog 1 (c-Raf-1 ) /
Mitogen-activated protein kinase kinases 1 and 2
((MEK1(MAP2K1) and
MEK2(MAP2K2) )/ Mitogen-activated protein kinase 1 and 3
(ERK1/2 ) pathway [13 ], [15 ].
G-protein alpha-q -stimulated
PKC-alpha and PKC-epsilon may
activate Erk cascade in
H-Ras -independent manner (e.g., via phosphorylation
of c-Raf-1) [16 ], [17 ]. On the other
hand PKC-delta and PKC-epsilon
may activate Erk cascade in
H-Ras -independent manner via phosphorylation of
Pyk2(FAK2) [16 ], [18 ], [19 ].
Alpha-1 adrenergic receptors-dependent ERK1/2 activation
may also be realized via Phosphoinositide-3-kinase (PI3K )
[20 ], [21 ]. c-Src can
activate PI3K reg class IA (p85-alpha) /
PI3K cat class IA (p110-beta) directly
[21 ], [22 ], [23 ] or via SHC
transforming protein (Shc )/
Son of sevenless homolog (SOS )/ H-Ras
[21 ].
Activated PI3K catalyzes transformation of
PtdIns(4,5)P2 in to Phosphatidylinositol-3,4,5-trisphosphate
(PtdIns(3,4,5)P3 ). Presumably, then
PtdIns(3,4,5)P3 activates Shc /
SOS / H-Ras . After that, H-Ras
activates c-Raf-1 /
MEK1(MAP2K1), MEK2(MAP2K2) )/
ERK1/2 [15 ], [20 ], [21 ].
Activated ERK1/2 phosphorylate V-fos FBJ murine
osteosarcoma viral oncogene homolog (c-Fos ) and Jun oncogene
(c-Jun ), thus activating cell growth and proliferation
[1 ], [13 ], [21 ].
Moreover, PKC-alpha , probably phosphorylates Ca2+
channels (for example, Calcium channel, voltage-dependent L type (L-type
Ca(II) channel ) [24 ], [25 ]) and this increase
extracellular Ca('2+) entry [26 ]. High level of
Ca('2+) influence cell contraction [2 ]. Also,
high level of Ca('2+), which was achieved due Ca2+ channels
activation, may facilitate activation of Ca('2+) -dependent
PKC-alpha , thus creating a positive feedback loop.
CaMK II may activates L-type Ca(II)
channel as well[27 ].
Garcia-Sainz JA, Vazquez-Prado J, Villalobos-Molina R
Alpha 1-adrenoceptors: subtypes, signaling, and roles in health and disease.
Archives of medical research 1999 Nov-Dec;30(6):449-58
Hague C, Gonzalez-Cabrera PJ, Jeffries WB, Abel PW
Relationship between alpha(1)-adrenergic receptor-induced contraction and extracellular signal-regulated kinase activation in the bovine inferior alveolar artery.
The Journal of pharmacology and experimental therapeutics 2002 Oct;303(1):403-11
Piascik MT, Perez DM
Alpha1-adrenergic receptors: new insights and directions.
The Journal of pharmacology and experimental therapeutics 2001 Aug;298(2):403-10
Gurdal H, Seasholtz TM, Wang HY, Brown RD, Johnson MD, Friedman E
Role of G alpha q or G alpha o proteins in alpha 1-adrenoceptor subtype-mediated responses in Fischer 344 rat aorta.
Molecular pharmacology 1997 Dec;52(6):1064-70
Wu D, Katz A, Lee CH, Simon MI
Activation of phospholipase C by alpha 1-adrenergic receptors is mediated by the alpha subunits of Gq family.
The Journal of biological chemistry 1992 Dec 25;267(36):25798-802
Baek KJ, Das T, Gray C, Antar S, Murugesan G, Im MJ
Evidence that the Gh protein is a signal mediator from alpha 1-adrenoceptor to a phospholipase C. I. Identification of alpha 1-adrenoceptor-coupled Gh family and purification of Gh7 from bovine heart.
The Journal of biological chemistry 1993 Dec 25;268(36):27390-7
Chen S, Lin F, Iismaa S, Lee KN, Birckbichler PJ, Graham RM
Alpha1-adrenergic receptor signaling via Gh is subtype specific and independent of its transglutaminase activity.
The Journal of biological chemistry 1996 Dec 13;271(50):32385-91
Kang SK, Kim DK, Damron DS, Baek KJ, Im MJ
Modulation of intracellular Ca(2+) via alpha(1B)-adrenoreceptor signaling molecules, G alpha(h) (transglutaminase II) and phospholipase C-delta 1.
Biochemical and biophysical research communications 2002 Apr 26;293(1):383-90
Lo RK, Cheung H, Wong YH
Constitutively active Galpha16 stimulates STAT3 via a c-Src/JAK- and ERK-dependent mechanism.
The Journal of biological chemistry 2003 Dec 26;278(52):52154-65
Zhang J, Tucholski J, Lesort M, Jope RS, Johnson GV
Novel bimodal effects of the G-protein tissue transglutaminase on adrenoreceptor signalling.
The Biochemical journal 1999 Nov 1;343 Pt 3:541-9
Arthur JF, Matkovich SJ, Mitchell CJ, Biden TJ, Woodcock EA
Evidence for selective coupling of alpha 1-adrenergic receptors to phospholipase C-beta 1 in rat neonatal cardiomyocytes.
The Journal of biological chemistry 2001 Oct 5;276(40):37341-6
Zhong H, Minneman KP
Alpha1-adrenoceptor subtypes.
European journal of pharmacology 1999 Jun 30;375(1-3):261-76
Hu ZW, Shi XY, Lin RZ, Chen J, Hoffman BB
alpha1-Adrenergic receptor stimulation of mitogenesis in human vascular smooth muscle cells: role of tyrosine protein kinases and calcium in activation of mitogen-activated protein kinase.
The Journal of pharmacology and experimental therapeutics 1999 Jul;290(1):28-37
Rohde S, Sabri A, Kamasamudran R, Steinberg SF
The alpha(1)-adrenoceptor subtype- and protein kinase C isoform-dependence of Norepinephrine's actions in cardiomyocytes.
Journal of molecular and cellular cardiology 2000 Jul;32(7):1193-209
Della Rocca GJ, van Biesen T, Daaka Y, Luttrell DK, Luttrell LM, Lefkowitz RJ
Ras-dependent mitogen-activated protein kinase activation by G protein-coupled receptors. Convergence of Gi- and Gq-mediated pathways on calcium/calmodulin, Pyk2, and Src kinase.
The Journal of biological chemistry 1997 Aug 1;272(31):19125-32
Hawes BE, van Biesen T, Koch WJ, Luttrell LM, Lefkowitz RJ
Distinct pathways of Gi- and Gq-mediated mitogen-activated protein kinase activation.
The Journal of biological chemistry 1995 Jul 21;270(29):17148-53
Hamilton M, Liao J, Cathcart MK, Wolfman A
Constitutive association of c-N-Ras with c-Raf-1 and protein kinase C epsilon in latent signaling modules.
The Journal of biological chemistry 2001 Aug 3;276(31):29079-90
Ueda Y, Hirai S, Osada S, Suzuki A, Mizuno K, Ohno S
Protein kinase C activates the MEK-ERK pathway in a manner independent of Ras and dependent on Raf.
The Journal of biological chemistry 1996 Sep 20;271(38):23512-9
Bayer AL, Heidkamp MC, Howes AL, Heller Brown J, Byron KL, Samarel AM
Protein kinase C epsilon-dependent activation of proline-rich tyrosine kinase 2 in neonatal rat ventricular myocytes.
Journal of molecular and cellular cardiology 2003 Sep;35(9):1121-33
Hu ZW, Shi XY, Lin RZ, Hoffman BB
Alpha1 adrenergic receptors activate phosphatidylinositol 3-kinase in human vascular smooth muscle cells. Role in mitogenesis.
The Journal of biological chemistry 1996 Apr 12;271(15):8977-82
Hu ZW, Shi XY, Lin RZ, Hoffman BB
Contrasting signaling pathways of alpha1A- and alpha1B-adrenergic receptor subtype activation of phosphatidylinositol 3-kinase and Ras in transfected NIH3T3 cells.
Molecular endocrinology (Baltimore, Md.) 1999 Jan;13(1):3-14
Gentili C, Morelli S, Russo De Boland A
Involvement of PI3-kinase and its association with c-Src in PTH-stimulated rat enterocytes.
Journal of cellular biochemistry 2002;86(4):773-83
Kubo H, Hazeki K, Takasuga S, Hazeki O
Specific role for p85/p110beta in GTP-binding-protein-mediated activation of Akt.
The Biochemical journal 2005 Dec 15;392(Pt 3):607-14
Liu SJ, Kennedy RH
alpha1-Adrenergic activation of L-type Ca current in rat ventricular myocytes: perforated patch-clamp recordings.
The American journal of physiology 1998 Jun;274(6 Pt 2):H2203-7
Yang L, Liu G, Zakharov SI, Morrow JP, Rybin VO, Steinberg SF, Marx SO
Ser1928 is a common site for Cav1.2 phosphorylation by protein kinase C isoforms.
The Journal of biological chemistry 2005 Jan 7;280(1):207-14
Graham RM, Perez DM, Hwa J, Piascik MT
alpha 1-adrenergic receptor subtypes. Molecular structure, function, and signaling.
Circulation research 1996 May;78(5):737-49
O-Uchi J, Komukai K, Kusakari Y, Obata T, Hongo K, Sasaki H, Kurihara S
alpha1-adrenoceptor stimulation potentiates L-type Ca2+ current through Ca2+/calmodulin-dependent PK II (CaMKII) activation in rat ventricular myocytes.
Proceedings of the National Academy of Sciences of the United States of America 2005 Jun 28;102(26):9400-5
Developed by WaveAccess